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Substitution of equations (18) and (30) into equation (16) 
and equating the coefficients of equal powers of E yield 

To = ~;‘~l~Z1~lx,dx, (31) 

71 = ~~‘(~I~=~~I~=~-‘xldXl (32) 

zz = [:‘[&I+,)~+l+~ 

- (!$l~=~](~1~=1~3x~dx, (33) 

[z~i.-l)~l~.~~~_l) 

- (%j&=,)XZ!._,) 

s XI 

r3 = 

cl 

-rs16=J]eI )-‘x,dx, (34) 

where equation (17) has been used. Evaluation of Q,, rl 
and 72 by the use of equations (16)-(29) one obtains 

Tg = 3[(1 +x/)2- l] (35) 

rl =~[(1+~,)3-3(1+~~)+21 (36) 

‘L2 =45(1-:x,)‘[~1+x,~6-5~L+x,~3+9~1+x,~-51 (37) 

53 = 75q;:x,), [64(1+x,)g+315(1+x,)7-2O58(1+x,)6 

+4725(1 +x,)~ -6804(1+~,)~+4725(1 +x,)’ 

+135ql+x,)2-3717(1+x,)+ 14001. (38) 

Higher order solutions of ui and Z, may be obtained by the 
same procedure. However, algebraic manipulation is com- 
plicated. 

RESULTS AND DISCUSSION 

The effect of E on the interface position is illustrated in 
Fig. 1. The departure from the quasi-steady state solution, 
i.e. zero-order solution, increases as Stefan number, E, 
increases as well as x, increases. 

Table 1 shows the values of 70, TV, r2 and 7j for the 
values of normalized interface position up to x, = 5. The 
values of rO, T, and 52 are consistent with the result of 
Pedroso and Domoto [4]. The values of 73 are quite 
different from the values of 73 of [4], which are also listed 
in Table 1. The difference between the perturbation method 
of this communication and Pedroso and Domoto [4] 
method is the use of Landau transformation in this com- 
munication. Landau transformation makes the nonlinearity 
due to moving interface explicit. Therefore, perturbation 
method can be used in a straightforward manner. 
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NOMENCLATURE 

a, wave number ; 
a0, critical wave number; 
‘4, parameter defined in equation (17); 
c, solute concentration (salinity); 
c, mean horizontal concentration; 
d, porous layer thickness; 
d P’ characteristic pore length; 

gravitational acceleration; 9. 
H, solute advection spectrum; 
Hj;! coefficient in the series expanded for H; 
K permeability; 
N, number of terms in the series expanded for 

ti and y; 

*On leave from Technion, Haifa, Israel. 

Pe, Peclet number (Ud,,/K,); 
Re, Reynolds number (Ud,/v); 
s, number of terms in the series expanded for S; 
S, Rayleigh number (a,gAcKd/vslc,); 
SO> critical Rayleigh number; 
S 
S::’ 

parameter defined in equation (9); 
Schmidt number (V/K,); 

u, module of velocity vector; 
X, horizontal coordinate ; 
2, vertical coordinate. 

Greek symbols 

a,, coefficient relating salinity with density; 
Y, salinity perturbation; 
l-2, coefficient in the series expanded for y; 
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boundary-layer thickness; 
Kronecker’s delta; 
salinity difference between lower and upper 
boundaries of the porous layer; 
porosity; 
small parameter for power series expansion; 
molecuiar diffusivity; 
kinematic viscosity; 
stream function; 
coefficient in the series expanded for $. 

INTRODUCTION 

DESTABILIZING density gradients in a saturated porous 
medium layer may result from salinity (so&e concentration) 
or thermal gradients. Such phenomena may occur in cases 
of an artificial recharge or deep well injection of water with 
salinity or temperature different from that of the ground- 
water. Temperature gradients may also be induced in 
groundwater by geothermal activity. 

A brief review of analytical, numerical and experimental 
studies concerning free thermal convection in porous media 
was presented by Palm et al. [i] and Straus [2]. 

Palm et al. [l] applied a series expansion method for 
analyzing the thermal convection in porous media. Their 
analysis was based on a perturbation expansion method 
developed by Kuo [3]. However their approach requires 
tedious hand calculations. Recently Straus [2] used a semi- 
numerical Gaterkin technique for the solution of this prob- 
lem. This method was first used in the study of thermal 
convection by Veronis [4]. The problem can be solved 
numerically [S, 61. However the numerical methods usually 
require large quantities of computer time. At high Rayleigh 
numbers special numerical grids should be used for the 
calculation of transport processes through the boundary 
layers developed on top and bottom of the convection cell. 

The aim of this stuay is to apply Kuo’s approach for 
simple calculations of the parameters characterizing free 
convection in porous media. 

The analysis refers to saline convection (resulting from 
salinity gradients). However, it can be applied to thermal 
convection as well. 

Consider a horizontal infinite layer of saturated porous 
material whose horizontal impermeable boundaries are at 
r = 0 and z = d at which the salinities are constant. The 
equations of motion and diffusion can be nondimensional- 
ized by applying the parameters d. he, x,/d, d*/h-,, as 
characteristic length, salinity, velocity and time, respectively. 

The motionless basic state is characterized by linear 
salinity and parabolic pressure profiles. 

FINITE AI~PLIT~D~ ANALYStS 

According to Schliiter et ut. [7] two dimensional motion 
is the only stable mode for moderately supercritical Rayieigh 
numbers when thermal convection is conducted in a viscous 
fluid layer. Palm et al. [l] stated that nearly identical proof 
shows that this is true also for convection in a saturated 
porous layer. Straus [2] showed that the two dimensional 
mode is stable up to Rayleigh numbers ten times larger than 
the critical Rayleigh number when thermal convection is 
conducted in the porous layer. 

The dimensionless Boussinesq equations of motion 
(Darcy) and diffusion governing the two dimensional per- 
turbations are: 

where the solute advection spectrum H is defined by 

$I and y are the stream function and salinity perturbations. 
S is the solute Rayleigh number. 

We intend to solve (1) and (2) with the following boundary 
conditions 

$.J’ = 0 at Z= 0,l (4) 

i.e. jm~rmeable boundaries on which the salinity is constant. 
According to the technique developed by Kuo [3], $ and 7 

can be expanded in power series whose terms are again 
expanded in double Fourier series as follows: 

where 

y = C C ~~~cosp~xsinq~z~~ 
n=t p=c! 

4=1 

‘12 = (S - S,)/S. 

(6) 

(7) 

The Rayleigh number can be expanded in a finite power 
series as foflows: 

I 

s = so + so. c fp (8) 

j=* 

where: SOS = So/( 1 - $“). (9) 

ifthe analysis is conducted for N = 1, it collapses to linear 
stability analysis. Then a single term is sufficient for ex- 
pressing $ and y. We may introduce Y\‘j = A, l-i:’ = A/i?a. 
Linear stability analysis yields the following critical values 
of the Rayleigh and wave numbers 

s, = 4nZ a0 = ?r. (10) 

There is a positive relationship between increases in 
Rayleigh numbers and wave numbers. However, taking the 
assumption that under su~rcritical conditions, the wave 
number remains constant, does not significantly affect the 
values of the Nusselt number obtained through the cal- 
culations [Z]. Such an assumption is not required by the 
method used here but considerably simplifies the analysis. 

Substituting(S), (6), and (8) in (l), (2) and (3) we obtain: 

where 

+rp;;!m-s) +(kq-mp)( -r~:&m+r~:;~m_* 
- f-E-;/), _ m + rp_-;;m _ 4 + I-P;;!~ + J] ( 13) 

According to (12) and (13) 

l-g; = -H&(n2gZ). (14) 

For p # 0 we obtain: 

Whenp=q=l,(iS)yieIds: 

ryj + 2 I-p,- >i’ = (Z/S&f~~” 2). 
i=1 

(16) 

According to (13) and (14), I-622) = A2/(16n). According to 
(13) and (16) 

A = (2/7~)(&,,)~‘~. (17) 



Shorter Communications 

where ? is the mean horizontal salinity. 
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FIG. 1. Mean salinity profiles for various values of S/S,. 
(a) Stable conditions, (b) S/S, = 1.5, (c) S/S, = 3.0. 

6 

I 2 3 4 5 6 7 8 9 
s/s, 

FIG. 2. The Nusselt number as a function of S/So. The 
shaded area indicates the range of experimental measure- 
ments as presented by Straus [2]. (a) Series expansion 
N = 6, s = 3; (b) series expansion N = 10, s = 5; (c) numeri- 
cal results [S]; (d) Straus’ results [2]; (e) series expansion 

N = 10, s = co; (f) series expansion N = 6, s = co. 

Substituting these results in (13) and (16) for p = q = 1 and 
n > 3 we obtain: 

For each value of n, the coefficients Fpj and Yr’ can be cal- 
culated directly through (18) after Y’;3 and F’$ are known. 
All the coefficients ‘-I’~~ and f’$& except for Y!yj and Fpi can 
be calculated through (1 l), (13), and (15). 

As the Rayleigh number increases, the series should in- 
clude increasing numbers of terms. In such cases simple 
computer programming can be applied. Extremely short 
computer time is required even in the case of expansion 
including ten terms (N = 10, s = 5). The convergence of the 
method and the number of terms required for the series 
expansion can be measured by the convergence of the 
Nusselt number 

N 

(20) 

In Fig. 1 we present profiles of C for various values of 
S/So. As expected this figure indicates the formation of 
boundary layers at the top and bottom boundaries as the 
Rayleigh number increases. 

Figure 2 illustrates the variation of Nusselt number with 
Rayleigh number for various series expansions. Palm et nl. 
[l], manually, calculated values ofNusselt number for N = 6 
and s = 3. However, the convergence of the method is quite 
moderate and there are quite significant differences between 
the N = 6 and N = 10 expansions. Figure 2 indicates the 
range of experimental results as presented by Straus [2] and 
his analytical results. Straus’ results lie in the lower part of 
the range of experimental values. The series expansion of 
N = IO, s = 5 yields results coinciding with the upper bound 
of the experimental values. The numerical results obtained 
with a very fine grid [8] are also shown in Fig. 2. These 
results are in fair agreement with the N = 10, s = 5 expan- 
sion as well as with Straus’ results. However, it should be 
mentioned that better agreement could be attained by 
applying larger values of N. 

DISCUSSION AND CONCLUSIONS 

The analysis presented can be applied for the range of 
steady two dimensional free convection in a saturated 
porous layer (up to S/S, = 10). Series expansions of N = 10 
can be used up to S/S, z 7. The advantages of this method 
are in its low requirement of computer time and simplicity. 

We may follow boundary-layer approximations similar to 
those developed for the ordinary Btnard convection [ 10,l l] 
in order to analyze the limitations of the present study. 
Such an analysis yields the following expressions: 

Nu - S”* 
(21) 

Pe z Sd,ld Re 2 (S/Sc)(d,/d). 

These expressions indicate that at high Rayleigh numbers 
the Nusselt number is proportional to the square root of 
Rayleigh number (the N = 10, s = 5 expansion did not yield 
such a result). In such cases the boundary layer developed 
at the top and bottom ofthe convection cell has a thickness, 6 
(when applying numerical methods the grid mesh size at the 
convection cell boundaries should be smaller than 6) which 
can be of the same order of magnitude as the pore size. 
Then Darcy’s law as well as the diffusion equation used in 
this study are not valid. At high Rayleigh numbers the 
Peclet number may attain large values. When the Peclet 
number is of the order of magnitude of unity, mechanical 
dispersion effects are of the order of magnitude of the 
molecular diffusion. Then the diffusion equation applied in 
this study is not valid. Moreover, at high Rayleigh numbers, 
the Reynolds number may be larger than unity. Therefore, 
Darcy’s law is invalid. However, invalidity of the Darcy’s 
law due to this condition is reasonable for thermal con- 
vection and less reasonable for saline convection. 
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NOMENCLATURE 

A, area [m’] ; 
CP, heat capacity [J/kg K]; 
D, diameter of sphere [m] ; 
93 gravitational acceleration [m/s’] ; 
Is heat-transfer coefficient [W/m” K] ; 
his = h,, + 0.68 c,,(T, - T,), latent heat of vaporization 

corrected to account sensible heat of subcooling 
in the film after [5] [J/kg]; 

: 
height of cylindrical part of vessel [ml; 
thermal conductivity [W/m K]; 

Z, 
mass rate of flow [kg/s]; 
Nusselt number; 

Pr, Prandtl number; 
Q? heat flux [WI; 
R, radius of sphere surface [m]; 
T,- T,, difference between saturation temperature and 

wall temperature [K]; 
Y velocity in x direction [m/s] ; 
X, coordinate measuring distance along 

circumference from the upper stagnation point 
of sphere [m] ; 

Y, coordinate measuring radial distance outward 
from sphere surface [m] ; 

4 thickness of the condensate film [m]; 
0, angular coordinate [rad] ; 
P7 dynamic viscosity [kg/m s]; 
p, p., density of condensate and density of vapor 

CWm31. 

Subscripts 

H, hemisphere; 
0, initial conditions; 

?), 
sphere; 
average value. 

lNlltODUCTlON 

IN CHEMICAL apparatus and devices of food industry, con- 
densation processes very often occur on sphere surfaces. 
Mixer evaporators to condense vegetable or fruit pulps 
are an example of such devices. 

The first results of calculations of heat transfer at film 
condensation on the sphere were given by Dhir and Lienhard 
[l]. They have used Nusselt’s theory and have developed 
the general expression for the heat transfer coefficient on 
plane and axisymmetric bodies in nonuniform gravity. But 
this expression, obtained with the initial condition 
6,(x = 0) = 0 for blunt bodies (such as the sphere, where 
6,, # 0) formally is not valid. Recently Yang [Z] has 
presented the results of numerical solution of momentum 
and energy equations, describing a thin layer of condensate 
in the form of laminar film running downward over the 

model analysis of heat transfer by laminar film condensation 
on sphere surfaces taking into account liquid wetting. 

ANALYSIS 

According to Nusselt’s treatment [3] the downward flow 
of the condensate in the film, under the action of the 
gravity force, describes the balance equation between the 
gravity tangential component and the viscous forces 
(6 - y)(p -pv)g sin 0 = p(du/dy), acting on the liquid el- 
ement of volume 2nR sin @(?I - y)R de. The expression for 
the velocity distribution is 

u(y) = (p -p&-‘g sin O(Sy -0.5~‘) 

and the mass flow of condensate in the film through the 
section at the given angle 0 is : 

h= 
I 

d 
pu(y)2nR sin 0 dy 

0 
= :np(p-p,)~-‘gsin20R63. (1) 

As the flow of condensate proceeds from 0 to O+dO, the 
film thickness varies from 6 to 6 + d6 as a result of both the 
influx of additional condensate and the change of the ring 
section area. This additional influx of condensate is 

dt+t = Zrrp(p -p&(-ig sin QR 

x (@” cos 0 d@ + sin 06’ ds). (2) 

The heat flux removed by the element of the sphere surface 
dA = 2nR2 sin OdO must be equal to the incremental mass 
flow of condensate times the latent heat of condensation 
of the vauor: 

T,- L 
dQ=k6 dA = dtih;, 

hence after substituting equation (2) we obtain 

(a64cosO-b)dO+63sinOdh = 0 (4) 

where: a = 213, b = p(T,-T,)Rk/p(p-p,)gh;,. This equa- 
tion can be reduced to the complete differential equation. 
Therefore the solution of this equation in the form of 
6 = 6(O) can be obtained from the relation 

s 

0 
564 

(sin @) 
5’3 cos 0 d@ 

0 0 

s 

0 
-b (sin @)sj3 d@ +a(sin 00)813(64 -63) = 0 

00 
hence 

0 

(sin @)5’3 d@ + C 
64= b s @O 6: 

+(sin 0)*‘3 
, ,where C = $ - (sin @0)8’3. 

b 
(5) 

Let us consider two cases of the laminar film condensation 
sphere. This communication presents the results of Nusselt’s on sphere and bottom hemisphere surfaces 


